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Charge-density-wave formation in a half-filled fermion-boson transport model: A projective
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We study the metal-insulator transition in a very general two-channel transport model, where charge carriers
are coupled to a correlated background medium. The fluctuations of the background were described as bosonic
excitations, having the ability to relax. Employing an analytical projector-based renormalization technique, we
calculate the ground-state and spectral properties of this fermion-boson model and corroborate recent numeri-
cal results, which indicate—in dependence on the “stiffness” of the background medium—a Luttinger liquid to
charge-density-wave transition for the one-dimensional half-filled band case. In particular, we determine the
renormalized electron and boson dispersion relations and show that the quantum phase transition is not trig-
gered by a softening of the boson modes. Thus, the charge density wave is different in nature from an usual

Peierls distorted state.
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I. INTRODUCTION

Charge density waves (CDWs) are broken symmetry
states of metals that predominantly appear in materials which
have a highly anisotropic crystal and electronic structure.!
The formation of CDWs strongly depends on the band-filling
and on the topology of the Fermi surface. Concerning the
latter, one-dimensional (1D) systems are peculiar, because
their Fermi surface consists of two points only. Not surpris-
ingly, electron-electron and electron-phonon interactions,
which are the driving forces behind most metal-insulator
transitions, have more impact in reduced dimensions. At
the same time, however, quantum fluctuations and finite-
temperature effects—both counteracting any development of
long-range order—become increasingly important as well.
Then, all in all, in 1D, usually a rather complex interplay
between the charge, spin, orbital, and lattice degrees of free-
dom evolves, which, of course, will strongly affect the trans-
port properties of the system. Prominent examples are quasi-
one-dimensional halogen-bridged transition metal complexes
(MX-chains).?

The theoretical description of such highly correlated 1D
systems is frequently based on “microscopic” models like
the half-filled SSH,? Holstein,*® and Peierls,” Hubbard,?
(quarter-filled) #-J models,” or combination of these.!”
Thereby, the complexity of the electron-electron or electron-
phonon interactions in the Hamiltonians usually prevents the
exact (numerical) solution of the model in the thermody-
namic limit, which would be necessary in order to pinpoint a
true quantum phase transition between a metal and a CDW.

To some extent, the state of affairs improves if one con-
siders simplified transport models instead, where particle
motion takes place in an effective background medium. The
“background” reflects the correlations inherent in the system,
e.g., the charge, orbital, or spin order in a solid. That quasi-
particles move through an ordered insulator is a very general
situation in condensed matter physics.'""!? This scenario also
applies to soft matter systems like DNA, where the charge
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transport on the backbone is affected by the “configuration”
of chemical side groups, which, vice versa, depends on the
physical presence of charge carriers.'3

Along this line, a fermion-boson quantum transport
model,

H=—1,2 cle/(b] +b) =N\, 2 (b] +b) + 0,2, bb;,
(i.j) i i

(1)

has been proposed a few years ago,'* and was shortly after-
wards solved for a single particle (N,=1) in a 1D infinite
system'> by a variational numerical diagonalization tech-
nique. The Hamiltonian (1) mimics the background by
bosonic degrees of freedom [bf)], which influence and even
may control the transport of fermionic particles [cl@)] on the
N sites of a regular lattice. Every time a particle hops be-
tween nearest-neighbor Wannier sites (i, j), it creates (or de-
stroys) a local excitation of energy w, in the background
medium at the site it leaves (it enters). Clearly these distor-
tions tie the particle to its origin (cf. the string effect as a
hole moves in a Néel spin background). Of course, any dis-
tortion of the background can heal out by quantum fluctua-
tions (again, one can have spin fluctuations in mind). Ac-
cordingly, in the Hamiltonian (1), the \;, term was included,
allowing for spontaneous boson creation and annihilation
processes.

Strong correlations, nevertheless, may evolve in a system
described by the Hamiltonian (1), provided the background
excitations have a rather large energy and the ability of the
background medium to relax is small, i.e.,

0=51 and A=< )

Iy I
For the half-filled band sector (N,=N/2), these correlations
may even drive the system into an insulating state by estab-
lishing CDW long-range order. This has been shown quite
recently for the 1D case: small cluster diagonalizations'¢ and
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density matrix renormalization group (DMRG) calculations
supplemented by finite-size scaling!”'® give strong evidence
for a Tomonaga-Luttinger-liquid (TLL) CDW quantum phase
transition as A becomes small at large enough (). These
purely numerical approaches rely on an (inevitable) trunca-
tion of the bosonic Hilbert space. Determining the metal-
insulator phase boundary this seems to be uncritical, because
the CDW found at half-filling is a few-boson state. The situ-
ation becomes more difficult if we enter the fluctuation-
dominated regime of small (), where many bosons are ex-
cited in the system.

In the present work, we investigate the fermion-boson
transport model (1) by means of an analytical approach,
which avoids these disadvantages. This approach, called pro-
jective renormalization method (PRM),' is based on a se-
quence of discrete unitary transformations, so that—in con-
trast to continuous (e.g., flow-equation based) unitary
transformation schemes?*—a direct link to perturbation
theory can be provided. The method has already been
successively applied to a number of many-particle
models.!*?1-23 Here we will analyze the ground-state and
spectral properties of the Hamiltonian (1) exclusively for the
half-filled band case, in both the metallic and insulating re-
gimes. In particular we study the signatures of the TLL-
CDW transition in terms of the renormalized quasiparticle
band and boson dispersion, and the boson spectral function.
The paper is organized as follows. In Sec. I A we briefly
resume the basic concepts behind the PRM approach. The
application of the PRM to the fermion-boson transport model
will be described in detail in Sec. II B. Sections III and IV
present respectively the ground-state and spectral results of
the numerical evaluation of the renormalization equations.
We conclude in Sec. V.

II. THEORETICAL APPROACH

A. Projector-based renormalization method

The PRM starts from the usual decomposition of a many-
particle Hamiltonian into a solvable unperturbed part H, and
a perturbation H,, where H; should not contain any part that
commutes with H,. Thus, the perturbation H,; consists of
transitions between the eigenstates of H,, with nonvanishing
transition energies. The basic idea of the PRM is to construct
an effective Hamiltonian H\=H,,+H, ) with renormalized
parts Hy, and H,,, where all transitions with energies
|Eg\—Ep,| larger than a given cutoff energy \ are elimi-
nated. Ejy, and Ef, denote the eigenenergies of Hy,.

The renormalization procedure starts from the cutoff en-

ergy A=\ of the original model H and proceeds in steps of
AN to lower values of \. Every renormalization step is per-
formed by means of a unitary transformation,

Hy_p) = €N Hye ™0, 3)

The generator X, 5, of the unitary transformation has to be
fixed appropriately (for details see Ref. 19). For instance, in
lowest order perturbation theory, it reads
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Xyan= LLQ)\—A)\HI,)\' 4)
0,\

Here, Ly, is the Liouville superoperator of the ‘“unper-
turbed” Hamiltonian H,,, which is defined by the commuta-
tor of H,, with any operator variable A, ie., Lj,A
=[Hy\,A], and Q)_,, is a projection superoperator, which
projects on all transitions with respect to the eigenspectrum
of Hy,_a, With transition energies larger than A—AN\. In this
way difference equations can be derived which connect the
parameters of H, with those of H,_,), and which are called

renormalization equations.
The limit A—0 provides the desired effective Hamil-

tonian H =H,_o=H)_o, wWhere the elimination of the tran-
sitions originating from the perturbation H; leads to a renor-

malization of the parameters of H. Note that H is diagonal or
at least quasidiagonal and allows to evaluate physical quan-
tities. The final results depend on the parameter values of the
original Hamiltonian H. Finally, we note that H and H have
the same eigenvalue spectrum since both Hamiltonians are
connected by a unitary transformation.

To evaluate expectation values of operators A, formed
with the full Hamiltonian, we have to apply the unitary trans-
formation to A as well,

Tr Ae PH ~
A)= e (AN)u, =AW, (5)

where we define A(\)=e*Ae** and A=A(\ —0). Thus ad-
ditional renormalization equations are required for A(\).

B. Application to the two-channel transport model
1. Renormalization equations

We first rewrite the model (1), performing a unitary trans-
formation b;— b;+\,/ w,, that eliminates the boson relaxation
term in favor of a free-particle hopping channel,

H=- th c;fc,- - th c;rc,»(b,T +b)) + wbz b;b[, 6)
(ij) (ij) i
with
t A A
L=p=b-p=—, (7)
tb wy, Q
This makes the two transport channels contained in the

Hamiltonian (1) explicit: the coherent particle transfer, which
takes place on an energy scale («;), and the boson-affected
hopping (7).

Next, in order to exploit the translation invariance, we
consider the Hamiltonian (6) in momentum space

. 1 . .
H=, gichep + w0, byb, + TFVE gk(b:;ckc,ﬁq +byCriyCr)-
k q VIV kg

(8)

In what follows, we consider a 1D lattice with lattice con-
stant a, i.e., gg=—21 cos ka and g,=-2t, cos ka.

195127-2



CHARGE-DENSITY-WAVE FORMATION IN A HALF-...

Going forward, it turns out to be useful to remove the
mean-field part from the fermion-boson coupling term. De-
fining fluctuation operators,

5(Cltck+q) = Cltckﬂ] - <Czck> 5{],0’ (9)

the Hamiltonian (8) takes the form

1
H=2 eicjc,+ 0, bib,+ TT]Z gilcte)(bh+ bo)
k q VIV k

1
+ ?E gk[b:; 5(C}ch+q) + bq 5(Cz+qck)] . (10)
VN k,q

Obviously, the purely bosonic part of H, i.e., the second and
third term of Eq. (10), can be diagonalized by a shift in the
bosonic operators. Introducing new bosonic creation opera-
tors,

1 8k
Bl=bl+—=2 “cic) 8,0, (11)
177 NS k*k7%q,0
the Hamiltonian (10) can be rewritten as H=H,+H, with

1 8k, +
Hy= > (&= 2gk_2 —<ck/ckr>)clck + wbE BZBq
k Ny o q

+ 1%%(% gk(c,tc,))z, (12)

1 .
H = _TVE g BY(ciciy) + Bydlc el (13)
IV kg

Following the ideas of the PRM approach, we make the fol-
lowing ansatz for the renormalized Hamiltonian H, (after all
transitions with energies larger than A have been integrated
out), H\=H,\+H, ,, where

HO,)\ = E Sk‘)\CZCk + E Ak’)\CZCHQ + E wq’)\B;Bq + E)\, (14)
k k q

1
Hl,)\ = TT/E gk®k,q()\)[B;5(cltck+q) + qu‘(CZﬂ;Ck)] . (15)
VIV kg

The O function in Eq. (15)
®k,q(7\) =0\ - |8k,)\ = Efaga T wq,}\|)

guarantees that only transitions with excitation energies
smaller than N\ remain in H,,. In H,,, also a symmetry
breaking field, A, ,, was introduced, which couples together
particle-hole excitations with wave vectors k and k+Q,
where Q=m/a. Note that the renormalization of A;, may
lead to a transition to a CDW ground state at half-filling.
By integrating out all transitions between the cutoff of

the original model N and A=0, all parameters of the
original model will become renormalized. To find their
N-dependence, we derive renormalization equations for the
parameters &, A\, @, ), and E,. The coupling parameter
gy 1s not renormalized when we restrict ourselves to lowest
order perturbation theory in each renormalization step A\.
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The initial parameter values are determined by the original
model (A\=\)

1 8k o+
Sk,i=8k—28kﬁz —cpcrr),s (16)
K @b
- 1 T 2
Ey\= (E gk<Cka>) ) (17)
Nay\“y
Ak,)( = 0+, and wq!): = Wyp. (18)

Let us assume that the symmetry breaking field ~A; ) can
be considered as small compared to the hopping part in H, .
In this case, the dynamics of H,, is approximately governed
by

[Hoxci] =2l (19)
[HO’)\,B;] = qu\B;. (20)

Following Eq. (4), the lowest order expression generator
X A\ 18 obtained as

1 219k ,(N,AN)
XA\ = /_—E 4
VN kg €k~ Ekrgn T Oy

X [B}&(clcray) — B,o(c) 0] (21)
Here,
01 NAN) = O\ = [\ = Eign + W)
X Ofleg n-an = Ekrgr-an + @gr-anl = (A = AN)]
(22)

is a product of two ® functions which assure that only exci-
tations between N\ and A—AN\ are eliminated by the unitary
transformation (3). From Eq. (3), the Hamiltonian H,_,, is
easily evaluated within second order perturbation theory,

1
Hy_p\ = Hy +[X) an.Ho ]+ E[X)\,A)\’[X)\,A)\’HO,)\]]

+ [ X\ an-Hi - (23)

An alternative expression for Hy_,, is obtained by replacing
N in Egs. (14) and (15) by the reduced cutoff A—AN. Thus,
H\_sm\=Ho -ax+Hjy-an With

_ i i
Hoyy-an= > ELA-ANCiCk Tt > A \-ANCiChs0
k X

+> wq,}\—A}\BZBq +E\_ans (24)
q

1
Hy\ = ?E 810y (N = AN)
VN kg

X [325(C£Ck+q) + Bq§(c}£+qck)]. (25)

A comparison of expression (23) with Egs. (24) and (25)
leads to the renormalization equations which connect the pa-
rameter values of the Hamiltonian at cutoff A with those at
cutoff A—AN. We obtain
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gi®k,q()\’ A)\)
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Ek N-AN

1
&\ T =2 {("5 + 1)

N

Wy \-AN ~

RN T Ekigh T Wy Er

E(k

+ gl%+q®k+q,—q()\)®k+q+Q,—q()\’AA) + gi

B 8k
+ (nq - ni_q +1)

2_q®k_q’q()\,A)\) } 26)

= Ek—g\ T Wy

c
k+q

10, (N AN)

9’
ERN T Ekign T Wy

(27)

004N O (N, AN)

1< ) 800, (M)Og (N AN)
Ak,)\—m\ - Ak,x = _E kg s
N q Ekro N~

+ gzﬂyk+q+Q,—q()\)®k+q,—q()\’A)\)
Er + O)q’)\

Elrgron T Wy

kg~

O 0N B, o(\,AN)

Ektg+ON ~ Ekro N T W\

k+q

®k/+Q,Q()\) k+Q,Q()\’ A)\)

EAN T Ehrgn T Wy )\

1 010Ny, (N, AN)

Oti0.0N) O o(N,AN) .

>

Nk' 8kr’)\—8kr+Qy)\+wQ’)\ Skr‘)\+(UQ,)\

Ekr+Q N T

&\~ Erro N T W\

Since the equation for the energy shift E,_,, is not needed in
the following it has been left out for briefness. In Egs. (26)
and (27), we have defined new expectation values ny
—(ckck> n, —(B 2> and d;= (ckck+Q) which are formed with
the full Hamlltoman H. Suppose these expectation values are

known, the renormalization between the cutoff \ of the origi-
nal Hamiltonian H and A=0 leads to the Hamiltonian I-I,

H = E §kack + 2 &kc,tckJrQ + 2 (T)qB;Bq + E, (29)
k k q

where &, &k, @,, and E denote the parameter values at A
=0.

Note that the fully renormalized Hamiltonian H describes
an uncoupled system of renormalized (dressed) electrons and
bosons. Both parts are quadratic either in the fermionic or in

the bosonic operators. By a rotation in the fermionic sub-

q°

space the electronic part of H can easily be diagonalized.
Thus, any expectation value can be evaluated. This property
will be used in the following in order to evaluate the yet
unknown expectation values ny, nf , and d}.

2. Expectation values

The expectation values can be evaluated self-consistently
within the PRM formalism by applying the same unitary
transformation as was used before for the Hamiltonian. Fol-
lowmg Eq. (5), for instance, nj can be expressed by nj
—(ck()\)ck()\»y, where (-- >H means the average formed
with Hy and c/(\) is given by CT()\) eXheje™x. For the
transformed operators ck()\) and B’ ()\) we use the ansatz

HOSETANGEDY (BegaByCisg+ YearBict_)  (30)
q

and

gigrdy. (28)

Erro N~ Exn T W )\

BI(N) = ¢y \Bl+ 1, \B_, + % YnOchged).  (31)

respectively. The operator structure is again taken over from
the lowest order expansion of the unitary transformation,
apart from the second term in B/(\) which is due to higher-
order terms. For the A-dependent coefficients ay », By gn," "
also renormalization equations have to be derived,

1

EVE (g + 15

q

8k
X(
ERN T Ekign T Wy

1 c
- 5\/2 (1 —nk_q+n§)
q

A N-AN ~ X\ =~

2
) @)\ Op (N, AN)

2
k=
X ( ) ak,)\®k_q,q()\,A)\) s
Ep—g\ ~ Exn T Wy \

(32)

Brga-ax = Brgn == Lﬁ & @\ O (N, AN),
VN Ex\ ~ Efagn T Wy

(33)

’Yk,qJ\—A)\ - '}’k,q,)\ = /L_ gk+q ak,)\®k+q’—q()\’A)\) s
VN €ign — Exn T @y \
(34)
¢q,>\—m\ - ¢q,x = E (”k nk+q

8k
X(
N T kg T g\

2
) DrOr (N AN),

(35)
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E (n—

Mg N=AN — Mg\ = ny,
4 AT NS +q
8k :
X( -+ ) 77q,)\®k+q,—q()\aA)\)7
Elrg N~ Exn T Wy
(36)
Yegr-an = Pegn=— Lr[ 8k Dy 2O (N, AN)
VN L €\ = Ekagn T Oy
8k
- - 7](/,)\®k+q,—q()\9 A)\)j| .
Elrg N~ kN T Wy \

(37

Integrating these equations between \ (where a =dgr=1
and all other coefficients zero) and A=0, we arrive at the
final result for ng, nB , and dj

nS = @ + 2 (B S+ nB)nk+q + %, qfﬁck J (38)
nt=gois + (1 + %) + 2 U i, (1 -7, (39)
k

dp= ak&k+Qgi + E [Ek,quQ,q(l + ﬁs) + 7k,q7k+Q,qﬁqB]gi—q-
q
(40)

Here, ak,Ek,q,--- denote the fully renormalized parameter
values at A=0. Similarly, ﬁ;,ﬁg , and 3; are expectation val-

ues defined with fI ie.,

= <CZCk>[.~1, (41)
iio = (BB, (42)
d; = <Czck+Q>l}? (43)

where the fully renormalized Hamiltonian H is given by Eq.
(29).

3. Dynamical correlation functions

Let us consider the boson spectral function,

o

([by(1). biDe'dt, (44)

—00

Clw)=
and the two electronic one-particle spectral functions

1~ s
Al(w) = ;Tf (cr()epye'dr, (45)

A(w) = %Tf (cicy(r)ye'dt. (46)

Here, A} (w) describes the creation of an electron with mo-
mentum k at time zero and its annihilation at time ¢ whereas
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in A} (w) first an electron is annihilated. As it is well-known,
Aj(w) and A} (w) can be measured by inverse photoemission
and by photoemission.

To evaluate Eqgs. (44)—(46) within the PRM approach, we
use again that expectation values are invariant with respect to
a unitary transformation under the trace. Thus, C (), Al(w),
and A; (w) can easily be computed if the bosonic and elec-
tronic one-particle operators are transformed in the same way
as the Hamiltonian. With Egs. (30) and (31) we obtain

&2 ~2
C0) =21 8w-@,)+ 28w+ 6.,
(,l)q w_q

+3 7L ”"; Ny —Be- @), (47)

Ekrqg — €k

Ap(w) = aknkﬁ(w 8k)+2[ﬁkq(1+n3)nk+qﬁ(w+w

— Bg) + T AT S0 — @y 5], (48)

Af(w) = @1 - ) (w - &) + E (B i0(1 -7, ) Sl + @,

= Epag) + yqu(l +nB)(1 —M_g) N = &y~ &y )],
(49)

where terms with two bosonic creation or annihilation opera-

tors have been neglected. The &3,1, 74> and l’jfk,q are the zero-\
coefficients taken from the evaluation of Egs. (35)—(37).

Let us emphasize that the expressions (44)—(46) fulfill the
sum rules,

J” dowC,(w) =1 (50)

and
f do[A;(w) + Al (w)]=1, (51)

respectively, which also hold if Eq. (47) for C,(w) and the
corresponding expressions for A} (w) and A;(w) are inserted.

4. Numerical analysis

The set of renormalization Egs. (26)—(28) and (32)-(37)
has to be solved numerically. To this end, we choose some
initial values for the expectation values entering the renor-
malization equations. Using this set of quantities, the nu-

merical evaluation starts from the cutoff A of the original
model H and proceeds step by step to A=0. For this proce-
dure we consider a lattice of N=500 sites in one dimension.
The width of the energy shell A\ was taken to be somewhat
smaller than the typical smallest energy spacing of the eigen-
states of Hy, ). For A=0, the Hamiltonian and the one-particle
operators are fully renormalized. The case A=0 allows the
recalculation of all expectation values, and the renormaliza-
tion procedure starts again with the improved expectation

values by reducing again the cutoff from X to A=0. After a
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insulator i

(charge density wave) {a} i
10k % X /.'- X 1
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i x s
_____ °
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15 b} ]
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(Tomonaga Luttinger liquid)

0.1

0 0.05 0.1 0.15 0.2
A

FIG. 1. (Color online) DMRG phase diagram of the two-channel
fermion-boson transport model (1) [see also Eq. (6)] for the 1D
half-filled band case (the dot-dashed line is a guide to the eye). The
crosses mark the parameter values used within our PRM calculation
when passing the TLL— CDW transition at fixed Q=10 {a} and
A=0.001 {b} (green arrows), respectively.

sufficient number of such cycles, the expectation values are
converged and the renormalization equations are solved self-
consistently. Convergence is assumed to be achieved if all
quantities are determined with a relative error less than 107,
The dynamical correlation functions (47)—(49) are evaluated
using a broadening in energy space that is equal to A\.

ITII. GROUND-STATE PROPERTIES
A. DMRG phase diagram

In order to classify the PRM ground-state and spectral
properties given below, we first present in Fig. 1 a refined
version of the DMRG ground-state phase diagram of the
half-filled fermion-boson model (1). Here the phase bound-
ary, separating the insulating phase with CDW long-range
order from the metallic TLL phase in the A—Q plane, was
obtained from the N — o extrapolated values of the Luttinger
liquid parameter K, and the single-particle (charge) gap
A,."7?* In the limit of large (), the background fluctuations,
associated with any particle hop, are energetically costly. As
a result the motion of the particle is hindered and charge
ordering becomes favorable if A, describing the ability of the
background to relax, is sufficiently low. By contrast, for large
AA> A (Q=0)=0.1588), we find metallic behavior for all
Q. In the limit of small (), the rate of bosonic fluctuations
(<Q7") is high. Then, in no way, correlations emerge within
the background medium. The DMRG results suggest that for
A=0, i.e., when the relaxation channel is closed, the ground
state is nevertheless metallic below a finite critical boson
energy {).(A=0). Let us re-emphasize that coherent particle
hopping is possible even when A=0, due to a six-step
vacuum-restoring hopping process,'”

R, =L{,L}, RILioR;y R; (52)

1,42 +2-0i+1
with R} =clc;,,b; and L =c]c;_b;. Rgilz leads to an “effec-
tive” (coherent) next nearest-neighbor transfer.
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0.2 -
L |— Q=20 |
01 ——- Q=138
L2008 ]
0.—____‘_____‘____‘_ ....... p—
0 0.25 0.5 0.75 1
(o) K/t

FIG. 2. (Color online) Zero-temperature expectation value d,
indicating CDW order in the half-filled fermion-boson model (1), at
Q=10 [upper panel (a)] and A=0.001 [lower panel (b)].

Concerning the nature of the metal-insulator quantum
phase transition, it is a moot point, whether the TLL-CDW
crossover in the half-filled fermion-boson model (1), taking
place at relatively large (), bears some resemblance to the
usual Peierls transition in the spinless fermion Holstein
model.>*!1822 In this regard the question of boson softening
will certainly be of importance.

B. CDW order parameter

To analyze the nature of the metal-insulator transition of
Eq. (1) in more detail, we calculate in the following a set of
characteristic quantities by the PRM for the (1D half-filled)
infinite system. Thereby we cross the TLL — CDW transition
in the following figures at fixed () [panels (a)] and A [panels
(b)] (cf. Fig. 1 lines {a} and {b}, respectively). As for the
half-filled Holstein model,?® the CDW structure of the insu-
lating state shows up in the correlation function d}
=<chk+Q>, which can be considered as CDW order param-
eter.

Figure 2 displays the variation in this expectation value
when the wave vector k runs through the half 1D Brillouin
zone. Obviously we have d;=0 in the metallic phase (blue
dot-dashed line). Entering the CDW state d} acquires finite
values, whereby the maximum of dj is at k=7/2 (for this
case Q= connects both Fermi momenta k,= = 7/2). If the
charge order is perfect (the particles are localized in an A-B
structure without any charge fluctuations, i.e., the lower and
upper bands are flat), we find dj to become independent of k.
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00O

(b) - ki
FIG. 3. (Color online) Dispersion of the occupied lower (empty
upper) quasiparticle band E, with k=7/2 (k>m/2) for Q=10
[panel (a)] and A=0.001 [panel (b)] (the Fermi energy sets the
zero-point of energy). Note that band energies are differently scaled
by 2¢, and 200, in (a) and (b). The insets show the k-dependence of
Ak.

This tendency becomes apparent by comparing the results
obtained in the CDW phase for different A (cf. upper panel
A=1/8, 1/12 and lower panel A=1/1000; recall that A
describes the ability of the background to relax.)

C. Fermion dispersion and quasiparticle weight

Next we investigate the renormalization of the fermionic

band structure, E,;%i\/(srzﬂ)zﬂﬁk\z see Fig. 3. In
the metallic regime, of course, there is no gap at the Fermi
energy (Fermi vector kp=1/2), and Ek, given in the inset, is
zero for all k.

While for 2A> () the free transport channel (¢;) domi-
nates even when () is large [see Eq. (7)], the bosonic degrees
of freedom will strongly affect the transport for small A. As
a consequence, ‘coherent’ transport takes place on a strongly
reduced energy scale only (we have t#;/t,=1/30[t//1t,
=1/400] for the blue dot-dashed line in panel (a) [(b)]).

The coefficient &%, depicted in Fig. 4, gives the weight of
the corresponding coherent part of the single-particle spectral
function (48). A;(w) can by probed by angle-resolved pho-
toemission experiments. At very large () (and small A), the
particles will solely move by the above mentioned six-step
process (52). Then the resulting “quasiparticle weight,” &f,
is nearly one [see Fig. 4(a)], and shows a very weak
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FIG. 4. (Color online) Spectral weight, &,2(, of the coherent (qua-
siparticle) part of the electronic one-particle spectral function (48).
We have Q=10 in panel (a) and A=0.001 in panel (b). Notations
are as in Fig. 3.

k-dependence. For small 1 <<{). we enter the fluctuation-
dominated regime and the nature of the metallic state
changes noticeably. In accordance with recent dynamical
DMRG data for the single-particle spectra, which show that
the absorption spectrum is overdamped near k=0, 77 because
of intersecting bosonic excitations, we find &,f~ 1 in the vi-
cinity of kg only [cf. Figure 3 in Ref. 18 and Fig. 4(b), blue
dot-dashed line].

In the insulating regime, the renormalized band structure
E, is gaped (see Fig. 3, dashed and solid lines). The inset in
Fig. 3 clearly shows an increase in the gap at k=k as A gets

smaller. Note that the size of the gap is equal to 25’%‘ While

&k is symmetric around k=1, E; is not. The reason is that
doping a perfect CDW, states with one particle removed are
connected by the six-step hopping process (52), whereas a
two-step hopping process relates states with an additional
particle.'6 In this way the collective particle-boson dynamics
leads to a more pronounced flattening of the coherent band
for k<kp, i.e., the widths of the highest photoemission and
lowest inverse photoemission band differ.'®!3 It is encourag-
ing that our analytic PRM approach reproduces this non-
trivial correlation-induced (mass) asymmetry. Let us empha-
size that the & given in Fig. 4 for the CDW case (dashed and
solid curves) belong to the highest photoemission band in the
whole interval [0, 7] (the corresponding E|, is not depicted in
the region 7/2<k=r in Fig. 3). Compared to the metallic
phase the spectral weight of the lower CDW band is signifi-
cantly changed for intermediate-to-small boson frequencies
only.
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FIG. 5. (Color online) Renormalized boson frequencies ®, for
the fermion-boson transport model (1) with Q=10 [panel (a)] and
A=0.001 [panel (b)].

D. Boson dispersion and occupation numbers

The Einstein bosons, describing excitations of the back-
ground, gain a dispersion owing to the coupling to the fer-
mions. The renormalization of the boson dispersion, Gq/ Wp,
is displayed in Fig. 5. It is rather weak for large () in both the
metallic and insulating states. For smaller boson frequencies,
we find a strong renormalization in the TLL phase (up to
50% for 1=0.8) at larger momenta [see dot-dashed curve in
panel (b)]. This is in accordance with the overdamped single-
particle excitations observed in the ARPES spectra'® and, of
course, also shows up in the depletion of Evi away from k
=/2 [see Fig. 4(b)].

Most notably, for the CDW state, we observe a hardening
of the boson modes near the Brillouin zone boundary. This
holds in the whole () region and means that the TLL
— CDW transition is unlike the usual displacive Peierls tran-
sition which, in general, is accompanied by the softening of
the g=1 boson (phonon).®?? In our case, the CDW state is
driven by the stiffness of the background, being most pro-
nounced at large ) and small A. By contrast, when () is
small, i.e., the background readily fluctuates, the kinetic en-
ergy part will naturally overcompensate any potential energy
gain by charge ordering. Another reason for the absence of
boson softening might be the particular form of the fermion-
boson interaction. As can be seen from the Fourier trans-
formed Hamiltonian (8), the fermion-boson coupling van-
ishes for k= = /2, i.e., precisely for the Fermi momenta of
the half-filled band case.
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FIG. 6. (Color online) Transformed boson expectation value
n?=(BIB,) at Q=10 (a) and A=0.001 (b).

It may be worthwhile to demonstrate that our PRM ap-
proach has the advantage that all features of the results for
@, and all other renormalized quantities can easily be under-
stood on the basis of the former renormalization equations.
For simplicity we shall restrict ourselves to the renormaliza-
tion of @, in the case of large (). In this regime, from Eq.
(27) one may point out the stiffening of the boson modes.
Since the boson energy w,, is much larger than the electronic
bandwidth, for all N a positive energy denominator (g,
—&jgr T ®,)) is obtained. Nevertheless, in the k sum on the
right hand side of Eq. (27) there are as many negative as
positive terms due to the factor (ny-ny,, ). Since from (n}
M) <0 it follows that (ep)\—&rgn)>0, the negative
terms have larger energy denominators and are always
smaller than the positive terms. The resulting renormaliza-
tion of @, is therefore positive for all g values and largest for
g= due to the smallest energy denominator. Furthermore,
since g, 1, and w, is large the renormalization contributions
in Eq. (27) are of the order of 7}/ w,=w,/Q*<w, which
gives rise to the weak dispersion of @, observed in Fig. 5.
For smaller values of () the bosonic and fermionic energy
values in the denominator of Eq. (27) can become compa-
rable which immediately leads to a strong dispersion of @
(see dot-dashed curve in Fig. 5 and solid curve in Fig. 8).

Figure 6 gives the (g-resolved) boson occupation num-
bers. As one can see from Eq. (39), this quantity for 7=0
acquires finite values solely by coupling to fermionic degrees
of freedom. Note that the first term in Eq. (39) vanishes for
T=0. We see that the formation of the CDW state is accom-

q
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FIG. 7. Boson spectral function C,(w) of the half-filled fermion-boson transport model (1) with: =10, A=1/4 [panel (a)]; Q
=1/150, A=1/90 [panel (b)]; =4, A=1 [panel (c)]; =4, A=2 [panel (d)]. The frequency w is given in units of 2z

panied by a finite occupation value of the g=0 boson mode,
which is about two orders of magnitude larger if one com-
pares ng for the CDWs established at Q=1.8 and Q=10,
respectively. Different from the Holstein-model CDW
(Peierls) phase,??> the CDW phase of the half-filled fermion-
boson transport model (1) is always a few-boson state how-
ever. Referring to this, our PRM results corroborate previous
small cluster exact diagonalization data.'® As can be seen
from the third term of Eq. (39), bosons having finite momen-
tum give rise to an effective fermion interaction on neighbor-
ing sites.

IV. SPECTRAL PROPERTIES

While the fermionic single-particle spectral function of
the transport model (1) was previously calculated for finite
clusters by exact diagonalization'® and dynamical DMRG'®
techniques, the spectral response of the bosons has not been
studied so far. The PRM allows to investigate the interrela-
tion between fermion and boson dynamics by computing the
boson spectral function, C,(w), according to Eq. (47), for the
1D infinite system.?®

Figure 7 shows C,(w) in the metallic regime, for different
Q) and A parameters. For very large =10 [panel (a)], the
boson energy is hardly renormalized by the coupling to the
fermions. Accordingly we observe a strong signal at the bare
boson frequency ()/21,=100 [first term in Eq. (47); the sec-
ond term in Eq. (47) will not contribute because there are no
states available with w=-€/2t;]. The third term in Eq. (47)
detects particle-hole excitations and leads to the two incoher-

ent absorption bands in C (w) running from g=0— 7 with
energies between w=0 and w=*10t;= *1,/2. At small ()

=0.006, see panel (b), the (one-) boson excitation is located
within the fermionic band. As a result we find a strong renor-
malization of the bare boson frequency (see also @, in Fig.
8), leading to the dispersive signal in the range w/2t,=0.5

X 107...1073. We note that for A=0.01 used in panel (b) the
fermion-boson coupling is small in comparison with the free
fermion bandwidth [we have g;/&,=1,/1,=0.3 in the model
(8)], hence the effect of multiboson absorption processes is
negligible. The lower two panels of Fig. 7 demonstrate how
A affects the boson absorption at fixed (). In panel (c), for

0 ! ! |
0.25 0.5 0.75 1

q/n

FIG. 8. (Color online) Renormalized boson frequencies for the
parameters used in Fig. 7: =10, A=1/4 (green double-dot-dashed
line; Q=1/150, A=1/90 (red dot-dashed line); Q=4, A=1 (blue
dashed line), 1=4, A=2 (black solid line).
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A=1 and =4, the boson frequency is larger by a factor of
two than the “free” fermion bandwidth (4¢,=2), whereas
they have the same size for the C,(w) spectrum with A=2
shown in panel (d). Quite differently, in the former case, the
bare boson mode hardens, while it softens near Q= in the
latter case, where the fermion and boson degrees of freedom
are strongly mixed. This becomes even more visible by com-
paring the corresponding (dashed and solid) @, curves in Fig.
8.

V. CONCLUSIONS

To summarize, we adapted the projective renormalization
method to the investigation of a two-channel fermion-boson
model, describing charge transport within a background me-
dium. By large-scale numerical DMRG studies this model
has been proven to show a metal-insulator quantum phase
transition for the one-dimensional half-filled band case. The
transition is triggered by strong correlations evolving in the
background and typifies as a Luttinger-liquid charge-density-
Wave Crossover.

Our analytical approach captures this TLL-CDW transi-
tion for the infinite system, without truncating the bosonic
Hilbert space as in purely numerical investigation schemes.
Therefore, the PRM is particularly well suited to analyze the
bosonic degrees of freedom when passing the metal-insulator
phase boundary.

In the course of the renormalization procedure of the
fermion-boson Hamiltonian we end up with a model of
noninteracting—but dressed—electrons and bosons. In this
way, the renormalization of the fermion band dispersion and
of the boson frequency is obtained, and various ground-state
expectation values were calculated. Moreover, we derived
analytical expressions for the single-particle (inverse) photo-
emission spectra and for the boson spectral function, which
allows us to pinpoint the most important absorption and

PHYSICAL REVIEW B 81, 195127 (2010)

emission processes during particle transport, and throws
some light on the nature of the TLL-CDW transition.

In particular, we show that the insulating CDW phase,
realized for large boson frequencies () and small boson re-
laxation parameter A, is characterized by a gapful mass
asymmetric band structure. Thereby the lower occupied band
is almost flat by reason that transport is only possible
through a vacuum restoring six-step hopping process. The
CDW phase is a few-boson state. By contrast, the metallic
(TLL) phase is a many-boson state, especially for small (),
where the background heavily fluctuates. Note that this re-
gime is not that easy accessible by numerical approaches.
Here we observe a well-defined electron band in the vicinity
of kr only. Due to many intersecting boson branches the
(inverse) photoemission spectra are ‘overdamped’ near the
Brillouin zone boundaries.

The boson spectral function and renormalized boson dis-
persion clearly indicate that the TLL-CDW transition is not
accompanied by a softening of the zone-boundary boson
mode. Rather a harding of the Q= boson is observed. This
might be partially attributed to the vanishing Fourier-
transformed fermion-boson coupling term at wave-numbers
*a/2, which denote the two Fermi points for the half-filled
band case. The situation changes if we look for a metal-
insulator transition for other commensurate band-filling fac-
tors, e.g., at quarter filling. Whether the system there under-
goes a soft-mode transition for small () is an interesting open
question that deserves future efforts. In this connection other
kinds of charge-ordered states should be also considered.
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